This article was downloaded by:
On: 24 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title content=t713597274

Effect of Metal Complexation on the Behavior of Liquid Crystalline Polymer

Kenji Hanabusa ${ }^{\text {a }}$; Takashi Suzukia; Toshiki Koyama ${ }^{\text {a }}$; Hirofusa Shiraia; Nobumasa Hojo ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Functional, Polymer Science Shinshu University, Ueda, Japan ${ }^{\text {b }}$ Shinshu University, Matsumoto, Japan

To cite this Article Hanabusa, Kenji, Suzuki, Takashi , Koyama, Toshiki, Shirai, Hirofusa and Hojo, Nobumasa(1990) 'Effect of Metal Complexation on the Behavior of Liquid Crystalline Polymer', Journal of Macromolecular Science, Part A, 27: 9, 1379-1387
To link to this Article: DOI: 10.1080/00222339009349698
URL: http://dx.doi.org/10.1080/00222339009349698

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


EFFECT OF METAL COMPLEXATION ON THE BEHAVIOR OF LIQUID CRYSTALLINE POLYMER

KENJI HANABUSA,* TAKASHI SUZUKI, TOSHIKI KOYAMA, and HIROFUSA SHIRAI

Department of Functional Polymer Science
Shinshu University
Ueda 386, Japan
NOBUMASA HOJO
Shinshu University
Matsumoto 390, Japan

Abstract

Liquid crystalline side-chain polymers ($\mathbf{3 b} \mathbf{b} \mathbf{3 f}$) crosslinked by a trans Pt (II) complex were synthesized by a ligand exchange reaction with dichlorobis(benzonitrile)platinum(II) and poly(methylsiloxane) (3a) bearing a p-cyanobiphenyloxy mesogen unit attached to the polymer backbone by a flexible spacer group. The amount (x) of p-cyanobiphenyloxy mesogen coordinating to the $\mathrm{Pt}(\mathrm{II})$ ion in polymers $\mathbf{3 b}, \mathbf{3 c}, 3 \mathrm{~d}, 3 \mathrm{e}$, and 3 f was $4.9,9.7,14.8,20.2$, and 49.6 mol\%, respectively. The effect of $\mathrm{Pt}(\mathrm{II})$ coordination on the thermotropic liquid crystalline behavior of 3a was examined by DSC, x ray diffraction, and polarizing microphotography. Polymers 3a-3d exhibited a nematic mesophase between T_{g} and T_{c}. On the other hand, 3e-3f, which have a large amount of Pt (II)-coordinating mesogen, did not show a definite nematic mesophase, but exhibited an ambiguous one. The introduction of $\mathrm{Pt}(\mathrm{II})$ ion into 3 a resulted in a crosslinked structure and consequently prevented the formation of the ordered nematic mesophase.

INTRODUCTION

Recently, interest in crosslinked liquid crystalline polymers (LCP) with elastic properties has increased because the LC phase can be well oriented by a small mechanical strain [1-6], and this property is not reversible [7]. With this in mind, Zentel [8] proposed a device that transforms a mechanical strain signal into an optical signal or a piezo element that transforms a mechanical strain signal into an electrical response. Such crosslinked LCPs have thus far been prepared by the reaction of some of the olefinic double bonds of the polymer with the $\mathrm{Si}-\mathrm{H}$ groups of oligo(dimethylsiloxane) [3, 5-8], by reaction of the hydroxy groups of the polymer with the isocyanate groups of the diisocyanate compounds [1, 4, 7, 11], by formation of enamel from the oligoester diol and melamine resin $[9,10]$, or by copolymerization of vinyl and divinyl monomers [2]. In the present paper we report the synthesis and properties of crosslinked LCP in which the crosslinkage is achieved by $\mathrm{Pt}(\mathrm{II})$ coordination of cyano groups in mesogenic side-chains. This research is part of a series of our studies on metal-containing LCP [12-14].

EXPERIMENTAL

Syntheses of Liquid Crystalline Polysiloxane (3a)

LC polysiloxane 3a was prepared by the addition of vinyl monomer to the polysiloxane 1 according to the literature [15].

To a mixture of $0.150 \mathrm{~g}\left(2.50 \times 10^{-3} \mathrm{~mol}\right)$ polysiloxane $1(\mathrm{DP}=34$, Shin-Etsu Chemical Co., Ltd.) and $0.960 \mathrm{~g}\left(2.75 \times 10^{-3} \mathrm{~mol}\right) 6-(p-$ cyanobiphenyloxy)hexyl acrylate 2 [13] was added 2.5 mL tetrahydrofuran containing $100 \mathrm{ppm} \mathrm{H} \mathrm{H}_{2} \mathrm{PtCl}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ as catalyst. The solution was stirred at $50^{\circ} \mathrm{C}$ for 24 h under a nitrogen atmosphere. After concentrating, the polymer 3a was reprecipitated from methanol and dried under vacuum. Yield: 0.92 g ; IR (KBr): $2220\left(\nu_{\mathrm{CN}}\right), 1720\left(\nu_{\mathrm{C}=\mathrm{o}}\right), 1600,1485 \mathrm{~cm}^{-1}$ (aromatic). Disappearance of $2160\left(\nu_{\mathrm{Sif}}\right)$ and $1635 \mathrm{~cm}^{-1}\left(\nu_{\mathrm{C}=\mathrm{C}}\right)$.

Analysis. Calculated for $\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Si}_{\mathrm{n}}\right.$: C, 67.44; H, 6.66; N , 3.42%. Found: C, $67.13 ;$ H, 6.54; N, 2.97\%.

Introduction of Pt (II) Ion into 3a

A typical procedure for introducing $\mathrm{Pt}(\mathrm{II})$ ion into $\mathbf{3 a}$ is described below. Toluene was distilled and bubbled with nitrogen for 15 min prior to use.
(A) In 10 mL toluene was dissolved $55 \mathrm{mg}\left(1.34 \times 10^{-4} \mathrm{~mol}\right)$ of 3 a , and then 2 mL toluene containing $1.57 \mathrm{mg}\left(3.31 \times 10^{-6} \mathrm{~mol}\right)$ dichlorobis(benzonitrile)platinum(II) [16] was added. The resultant solution was heated to $50^{\circ} \mathrm{C}$ for 1 h under a nitrogen atmosphere. After evaporating, methanol was added to precipitate. Crosslinked LCP 3b having $4.9 \mathrm{~mol} \%$ as the content of the $\mathrm{Pt}(\mathrm{II})$-coordination unit was obtained. Yield: 37 mg ; IR (KBr); 2280 (ν_{CN} coordinating to $\mathrm{Pt}(\mathrm{II})$), 2220 (ν_{CN} noncoordinating to $\mathrm{Pt}(\mathrm{II})$), and $340 \mathrm{~cm}^{-1}$ (trans $\nu_{\mathrm{Pt}-\mathrm{CI}}$).

Analysis. Calculated for $\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{SiPt}_{0.5} \mathrm{Cl}\right)_{0.049 n}\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}-\right.$ $\mathrm{Si}_{0.951 n}$: C, 66.39; H, 6.54; N, 3.37; Pt, 1.15%. Found: C, 65.69; H, 6.81; N, 3.00; Pt, 1.15%.
(B) In 10 mL toluene was dissolved $55 \mathrm{mg}\left(1.34 \times 10^{-4} \mathrm{~mol}\right)$ of 3 a , and then 2 mL toluene containing $4.88 \mathrm{mg}\left(1.05 \times 10^{-5} \mathrm{~mol}\right)$ dichlorobis(benzonitrile)platinum(II) was added. After the treatment described in (A), LCP 3c having $9.7 \mathrm{~mol} \%$ as the content of the $\mathrm{Pt}(\mathrm{II})$-coordination unit was obtained. Yield: 27 mg .

Analysis. Calculated for $\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{SiPt}_{0.5} \mathrm{Cl}\right)_{0.097 n}\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Si}\right)_{0.903 n}$: C, 65.39; H, 6.44; N, 3.32; Pt, 2.24%. Found: C, $65.93 ; \mathrm{H}, 6.51$; N, 2.98; Pt, 2.24%.
(C) In 10 mL toluene was dissolved $55 \mathrm{mg}\left(1.34 \times 10^{-4} \mathrm{~mol}\right)$ of 3 a , and then 2 mL toluene containing $6.26 \mathrm{mg}\left(1.32 \times 10^{-5} \mathrm{~mol}\right)$ dichlorobis(benzonitrile)platinum(II) was added. After the treatment described in (A), LCP 3d having $14.8 \mathrm{~mol} \%$ as the content of the $\mathrm{Pt}(\mathrm{II})$-coordination unit was obtained. Yield: 40 mg .

Analysis: Calculated for $\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{SiPt}_{0.5} \mathrm{C} 1\right)_{0.148 n}\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Si}\right)_{0.852 n}$: C, 64.36; H, 6.34; N, 3.26; Pt, 3.36\%. Found: C, 63.87; H, 6.33; N, 2.89 ; $\mathrm{Pt}, 3.36 \%$.
(D) In 10 mL toluene was dissolved $55 \mathrm{mg}\left(1.34 \times 10^{-4} \mathrm{~mol}\right)$ of $\mathbf{3 a}$, and then 2 mL toluene containing $7.90 \mathrm{mg}\left(1.68 \times 10^{-5} \mathrm{~mol}\right)$ dichlorobis(benzonitrile)platinum(II) was added. The elastic material was precipitated immediately. After stirred for 1 h at $50^{\circ} \mathrm{C}$ under a nitrogen atmosphere, the elastic precipitate was filtered off and washed with methanol. Upon drying, crosslinked LCP 3 e having $20.2 \mathrm{~mol} \%$ as the content of the $\mathrm{Pt}(\mathrm{II})$-coordination unit was obtained. Yield: 38 mg .

Analysis. Calculated for $\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{SiPt}_{0.5} \mathrm{Cl}\right)_{0.202 n}\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Si}\right)_{0.798 n}$: C, 63.30; H, 6.24; N, 3.21; Pt, 4.51%. Found: C, $63.86 ; \mathrm{H}, 6.12 ; \mathrm{N}$, 2.79 ; Pt, 4.51%.
(E) In 10 mL toluene was dissolved $55 \mathrm{mg}\left(1.34 \times 10^{-4} \mathrm{~mol}\right)$ of 3 a , and then 2 mL toluene containing $22.06 \mathrm{mg}\left(4.69 \times 10^{-5} \mathrm{~mol}\right)$ dichlorobis(benzonitrile)platinum(II) was added. The elastic material was precipitated immediately. After stirred for 1 h at $50^{\circ} \mathrm{C}$ under a nitrogen atmos-
phere, the elastic precipitate was filtered off and washed with methanol. Upon drying, the highly crosslinked LCP $3 f$ having $49.6 \mathrm{~mol} \%$ as the content of $\mathrm{Pt}(\mathrm{II})$-coordination unit was obtained. Yield: 35 mg .

Analysis. Calculated for $\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{SiPt}_{0.5} \mathrm{Cl}\right)_{0.496 n}\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Si}\right)_{0.504 n}$: C, 58.09; H, 5.72; N, 2.95; Pt, 10.17%. Found: C, $58.86 ; \mathrm{H}, 6.00$; N, 2.67; Pt, 10.17\%.

Measurements

A Hitachi 170-70 atomic absorption spectrometer was used to determine the Pt(II) content. IR spectra were obtained by a Jasco IRA-302. DSC was recorded on a Rigaku DSC-10A apparatus at the rate of $10^{\circ} \mathrm{C} /$ min in air. Wide-angle x-ray diffraction patterns were photographed with a Rigaku Geigerflex ($35 \mathrm{kV}, 25 \mathrm{~mA}, \mathrm{CuK}_{\alpha}$ line). Optical microphotography was performed on a Nikon polarizing microscope, equipped with a Mettler hot stage FP82 apparatus.

RESULTS AND DISCUSSION

Synthesis of Crosslinked Liquid Crystalline Polymers

A side-chain type of LCP 3a bearing a p-cyanobiphenyloxy mesogen unit attached to the polysiloxane backbone by a flexible spacer group was prepared by the addition of 6-(p-cyanobiphenyloxy)hexyl acrylate 2 to the reactive hydrogen of the polysiloxane 1 according to Scheme 1. Crosslinked polymers $\mathbf{3 b} \mathbf{- 3 f}$ exhibiting elasticity similar to a rubber, in which the crosslinkage was achieved by trans Pt (II) complexation, were synthesized by a ligand exchange reaction with $\mathbf{3 a}$ and dichlorobis(benzonitrile)platinum(II) (Scheme 1). The polymers and their abbreviations are summarized in Table 1, where x indicates the mol\% of Pt (II)-coordinating mesogen as determined by atomic absorption spectroscopy. The structure of the $\mathrm{Pt}(\mathrm{II})$ complex in $\mathbf{3 b} \mathbf{- 3 f}$ was assigned trans [17] because only one terminal $\mathrm{Pt}-\mathrm{Cl}$ stretch was observed in the far-IR spectrum ($\nu_{\mathrm{Pt}-\mathrm{Cl}} 340 \mathrm{~cm}^{-1}$).

Thermal Behavior

Figure 1 shows the DSC heating curves of 3a-3f. The thermal behavior of 3a is characterized by a glass transition $\left(T_{g}\right)$ into a nematic mesophase

TABLE 1. Abbreviations of Prepared
Polymers and Mol\% of Side-Chain
Coordinating to $\mathrm{Pt}(\mathrm{II})$

Sample	$x(\mathrm{~mol} \%)$
3a	0
3b	4.9
3c	9.7
3d	14.8
3e	20.2
3f	49.6

FIG. 1. DSC third heating curves of 3a-3f (heating rate: $10^{\circ} \mathrm{C} / \mathrm{min}$).
at $\sim 30^{\circ} \mathrm{C}$ and a clearing point $\left(T_{c}\right)$ at $\sim 100^{\circ} \mathrm{C}$ which corresponds to the transition from a nematic mesophase into a isotropic melt. Crosslinked LCPs 3b-3d, which contain the Pt(II)-coordinating mesogen in contents less than $15 \mathrm{~mol} \%$, showed similar DSC heating curves to that of 3a. However, if the $\mathrm{Pt}(\mathrm{II})$-coordinating mesogen in the side-chain is more than $\sim 20 \mathrm{~mol} \%$, the corresponding T_{c} disappeared in their curves (3 e and $3 f$ in Fig. 1).

X-Ray Diffraction

The x-ray diffraction patterns in the cases of $\mathbf{3 a - 3 c}$ exhibited a diffuse halo at a wide scattering angle and a second diffuse ring at a small angle (Table 2). The former corresponds to a distance of $4.3 \AA$, which is related to the lateral interferences between the mesogenic cores, while the latter corresponds to that of $22.6 \dot{\AA}$, which is close to the length of the sidechain in the extended conformation. On the other hand, it is noteworthy that the diffuse ring at a small angle, related to a long-range order, is not observed with $\mathbf{3 d - 3 f}$ having the $\mathrm{Pt}(\mathrm{II})$-coordinating mesogen over ~ 15 mol\%.

Polarizing Microscopy

Polarizing microphotographs of 3a-3f are shown in Fig. 2. Typical Schlieren textures with disclination of the nematic mesophase were observed for $\mathbf{3 a - 3 c}$ between T_{g}, and T_{c}. As these textures disappeared above T_{c} it can be concluded that the endothermic peaks near $100^{\circ} \mathrm{C}$ are the transition from the nematic mesophase into the isotropic melt. With respect to $\mathbf{3 d - 3 f}$, the distinct Schlieren texture was no longer observed, although the birefringence still remained. Therefore, it is thought that the

TABLE 2. Spacings of 3a-f Determined by X-Ray Diffraction

Sample	Spacing	(\AA)
3a	4.3	22.3
3b	4.2	22.6
3c	4.3	22.6
3d	4.2	-
3e	4.2	-
3f	4.2	-

FIG. 2. Polarizing microphotographs of 3a-3f. Bar represents $100 \mu \mathrm{~m}$.
mobility of the mesogenic segments in 3d-3f is reduced due to the restriction of side-chain segments by the higher level of crosslinking through the $\mathrm{Pt}(\mathrm{II})$ complex.

CONCLUSIONS

The LC elastomers ($\mathbf{3 b} \mathbf{b} \mathbf{3 f}$), in which crosslinking was achieved by a trans $\mathrm{Pt}(\mathrm{II})$ complexation, were prepared by coordination of the cyano groups in the side-chain of LCP (3a). The properties of these elastomers were dependent on the extent of crosslinking, that is, the mol \% of mesogen unit forming a $\mathrm{Pt}(\mathrm{II})$ complex. Thermal properties of $\mathbf{3 a} \mathbf{- 3 d}$ were characterized by a glass transition (T_{g}) and a clearing point (T_{c}), whereas $\mathbf{3 e}$ and $\mathbf{3 f}$ showed only T_{g}. X-ray diffraction patterns of 3a-3c exhibited both a short-range and a long-range order. In polarizing microphotographs, typical Schlieren textures with disclination were observed for 3a-

3c. Crosslinked LCPs 3b and 3c possessed a nematic mesophase similar to that of the parent LCP 3a. However, 3d-3f containing the $\mathrm{Pt}(\mathrm{II})$ coordinating mesogen in excess of $20 \mathrm{~mol} \%$ did not show a definite nematic mesophase. The introduction of high levels of $\mathrm{Pt}(\mathrm{II})$ ion crosslinks into 3a prevented the formation of a nematic mesophase.

REFERENCES

[1] R. Zentel and G. Reckert, Makromol. Chem., 187, 1915 (1986).
[2] G. R. Mitchell, F. J. Davis, and A. Ashman, Polymer, 28, 639 (1987).
[3] R. Zentel, G. F. Schmidt, J. Meyer, and M. Benalia, Liq. Cryst., 2, 651 (1987).
[4] R. Zentel and M. Benalia, Makromol. Chem., 188, 665 (1987).
[5] W. Gleim and H. Finkelman, Ibid., I88, 1489 (1987).
[6] J. Schatzle and H. Finkelmann, Mol. Cryst. Liq. Cryst., 142, 85 (1987).
[7] S. Bualek, H. Kapitza, J. Meyer, G. F. Schmidt, and R. Zentel, Ibid., 155, 47 (1988).
[8] R. Zentel, Liq. Cryst., 3, 531 (1988).
[9] A. F. Dimian and F. N. Jones, ACS Symp. Ser., 367, 324 (1988).
[10] D. Wang and F. N. Jones, Ibid., 367, 335 (1988).
[11] R. Zentel, Liq. Cryst., 1, 589 (1986).
[12] K. Hanabusa, J. Higashi, T. Koyama, H. Shirai, N. Hojo, and A. Kurose, Makromol. Chem., 190, 1 (1989).
[13] K. Hanabusa, T. Suzuki, T. Koyama, H. Shirai, N. Hojo, and A. Kurose, Ibid., 191, 489 (1990).
[14] K. Hanabusa, T. Suzuki, T. Koyama, H. Shirai, and A. Kurose, Polym. J., 22, 183 (1990).
[15] H. Finkelmann and G. Rehage, Makromol. Chem., Rapid Commun., 1, 31 (1980).
[16] T. Uchiyama, Y. Toshiyasu, Y. Nakamura, T. Miwa, and S. Kawaguchi, Bull. Chem. Soc. Jpn., 54, 181 (1981).
[17] D. W. Bruce, E. Lalinde, P. Styring, D. A. Dunmer, and P. M. Maitlis, J. Chem. Soc., Chem. Commun., p. 581 (1986).

